Nama: Maulana Kurniawan

 Kelas:  X IPS 3


                   SOAL CERITA SPLTV DALAM KEHIDUPAN SEHARI HARI

No 1.

Sebuah bilangan terdiri atas 3 angka. Jumlah ketiga angkanya sama dengan 16. Jumlah angka pertama dan angka kedua sama dengan angka ketiga dikurangi dua. Nilai bilangan itu sama dengan 21 kali jumlah ketiga angkanya kemudian ditambah dengan 13. Carilah bilangan itu.
Penyelesaian:
Misalkan bilangan itu xyz, x menempati tempat ratusan, y menempati tempat puluhan, dan z menempati tempat satuan. Jadi, nilai bilangan itu 100x + 10y + z. Berdasarkan data pada soal, diperoleh SPLTV sebagai berikut.
x + y + z = 16
x + y = z  2
100x + 10y + z = 21(x + y + z) + 13

Atau bisa kita ubah menjadi bentuk berikut.
x + y + z = 16
x + y  z = 2
79x  11y  20z = 13

Sekarang kita eliminasi variabel y dengan cara berikut.
 Dari persamaan 1 dan 2
x + y + z
=
16

x + y  z
=
2
2z
=
18
z
=
9


 Dari persamaan 1 dan 3
x + y + z
=
16
|× 11|
11x + 11y + 11z
=
176

79x  11y  20z
=
13
|× 1|
79x  11y  20z
=
13
+





90x  9z
=
189

Subtitusikan nilai z = 9 ke persamaan 90x  9z = 189 sehingga diperoleh:
 90x  9z = 189
 90x  9(9) = 189
 90x  81 = 189
 90x = 189 + 81
 90x = 270
 x = 3

Subtitusikan nilai x = 3 dan z = 9 ke persamaan x + y + z = 16 sehingga diperoleh:
 x + y + z = 16
 3 + y + 9 = 16
 y + 12 = 16
 y = 16  12
 y = 4
Jadi, karena nilai x = 3, y = 4 dan z = 9 maka bilangan itu adalah 349.
No 2.
Sebuah kios menjual bermacam-macam buah di antaranya jeruk, salak, dan apel. Seseorang yang membeli 1 kg jeruk, 3 kg salak, dan 2 kg apel harus membayar Rp33.000,00. Orang yang membeli 2 kg jeruk, 1 kg salak, dan 1 kg apel harus membayar Rp23.500,00. Orang yang membeli 1 kg jeruk, 2 kg salak, dan 3 kg apel harus membayar Rp36.500,00. Berapakah harga per kilogram salak, harga per kilogram jeruk, dan harga per kilogram apel?
Penyelesaian:
Misalkan harga per kilogram jeruk x, harga per kilogram salak y, dan harga per kilogram apel z. Berdasarkan persoalan di atas, diperoleh sistem persamaan linear tiga variabel berikut.
x + 3y + 2z = 33.000
2x + y + z = 23.500
x + 2y + 3z = 36.500

Untuk menyelesaikan SPLTV tersebut, kita akan menggunakan metode campuran yaitu sebagai berikut.
 Eliminasi variabel x pada persamaan 1 dan 2
x + 3y + 2z
=
33.000
|× 2|
2x + 6y + 4z
=
66.000

2x + y + z
=
23.500
|× 1|
2x + y + z
=
23.500





5y + 3z
=
42.500

 Eliminasi variabel x pada persamaan 2 dan 3
x + 3y + 2z
=
33.000

x + 2y + 3z
=
36.500
 z
=
3.500
y
=
 3.500


Subtitusikan y = z  3.500 ke persamaam 5y + 3z = 42.500 sehingga diperoleh:
 5y + 3z = 42.500
 5(z  3.500) + 3z = 42.500
 5z  17.500 + 3z = 42.500
 8z  17.500 = 42.500
 8z = 42.500 + 17.500
 8z = 42.500 + 17.500
 8z = 60.000
 z = 7.500

Subtitusikan nilai z = 7.500 ke persamaan y = z  3.500 sehingga diperoleh nilai y sebagai berikut.
 y = z  3.500
 y = 7.500  3.500
 y = 4.000

Terakhir subtitusikan nilai y = 4.000 dan nilai z = 7.500 ke persamaan x + 3y + 2z = 33.000 sehingga diperoleh nilai x sebagai berikut.
 x + 3y + 2z = 33.000
 x + 3(4.000) + 2(7.500) = 33.000
 x + 12.000 + 15.000 = 33.000
 x + 27.000 = 33.000
 x = 33.000  27.000
 x = 6.000
Dengan demikian, harga 1 kg jeruk adalah Rp6.000,00; harga 1 kg salak adalah Rp4.000,00; dan harga 1 kg apel adalah Rp7.500,00.
No 3.
Diketahui tiga bilangan a, b, dan c. Rata-rata dari ketiga bilangan itu sama dengan 16. Bilangan kedua ditambah 20 sama dengan jumlah bilangan lainnya. Bilangan ketiga sama dengan jumlah bilangan yang lain dikurang empat. Carilah bilangan-bilangan itu.
Penyelesaian:
Ketiga bilangan adalah a, b, dan c. Ketentuan soal adalah sebagai berikut:
 Rata-rata ketiga bilangan sama dengan 16 berarti:
(a + b + c)/3 = 16
Apabila kedua ruas kita kalikan 3 maka:
a + b + c = 48
 Bilangan kedua ditambah 20 sama dengan jumlah bilangan lain berarti:
b + 20 = a + c
atau bisa kita tuliskan sebagai berikut.
 b + c = 20
 Bilangan ketiga sama dengan jumlah bilangan lain dikurang 4 berarti:
c = a + b  4
atau bisa kita tuliskan sebagai berikut.
a + b  c = 4

Sampai sini kita peroleh SPLTV sebagai berikut.
a + b + c = 48
 b + c = 20
a + b  c = 4

Untuk menyelesaikan SPLTV tersebut, kita akan menggunakan metode campuran yaitu sebagai berikut.
 Eliminasi variabel a pada persamaan 1 dan 2
a + b + c
=
48

 b + c
=
20
2b
=
28
b
=
14


 Eliminasi variabel a pada persamaan 1 dan 3
a + b + c
=
48

a + b  c
=
4
2c
=
44
c
=
22


Subtitusikan nilai b = 14 dan nilai c = 22 ke persamaan a + b  c = 4 sehingga diperoleh nilai a yaitu sebagai berikut.
 a + b  c = 4
 a + 14  22 = 4
 a  8 = 4
 a = 4 + 8
 a = 12
Jadi, ketiga bilangan tersebut berturut-turut adalah 12, 14, dan 22.


Komentar

Postingan populer dari blog ini

SUDUT-SUDUT BERELASI PADA KUADRAN I, II, III, IV

Transformasi geometri

DETERMINAN DAN INPRESMATRIX