NAMA : MAULANA KURNIAWAN KELAS: X IPS 3 Sudut Berelasi – Adalah perluasan definisi dasar ilmu trigonometri tentang kesebangunan pada segitiga siku-siku yang memenuhi untuk sudut kuadran I atau sudut lancip (0 − 90°). Berikut adalah keterangan lengkap dengan rumus sudut berelasi Rumus Sudut Berelasi Dengan memakai sudut-sudut relasi, kita mampu menghitung nilai perbandingan pada trigonometri untuk sudut pada kuadran lainnya, bahkan untuk sudut yang lebih dari 360°, termasuk juga sudut negatif. Sudut Relasi Kuadran I Untuk α lancip, maka (90° − α) menghasilkan sudut-sudut kuadran I. Di dalam trigonometri, relasi sudut-sudut dinyatakan sebagai berikut : sin (90° − α) = cos α cos (90° − α) = sin α tan (90° − α) = cot α Sudut Relasi Kuadran II Untuk α lancip, maka (90° + α) dan (180° − α) menghasilkan sudut-sudut kuadran II.alam trigonometri, relasi sudut-sudut dinyatakan sebagai berikut : sin (90° + α) = cos α cos (90° + α) = -sin α tan (90° + α) = -cot α sin (180° − α) = sin α cos (1...
Nama: Maulana Kurniawan Kelas: XI IPS 3 Pengertian Transformasi Geometri Sebelum mengetahui pengertian dari transformasi geometri. Kita jabarkan lebih dulu apa itu arti transformasi dan apa itu geometri. Transformasi berarti perubahan sebuah struktur menjadi bertambah, berkurang atau tertata kembali unsurnya. Sedangkan geometri berarti cabang matematika yang menjelaskan soal sifat garis, sudut, bidang, dan ruang. Berdasarkan dua definisi tersebut transformasi geometri dapat disimpulkan sebagai perubahan bentuk dari sebuah garis, sudut, ruang, dan bidang. Dalam kehidupan sehari-hari, transformasi geometri ini biasanya dimanfaatkan untuk pembuatan karya-karya seni dan desain arsitektur. Jenis-jenis Transformasi Geometri Transformasi geometri itu sendiri terdiri dari empat jenis, yaitu translasi, rotasi, refleks, dan dilatasi. Berikut adalah pemaparan lengkap masing-masing jenis transformasi geometri: 1. Translasi (Pergeseran) Translasi atau pergeseran merupakan jenis dari transforma...
Nama: Maulana Kurniawan Kelas: XI IPS 3 Determinan Matriks Determinan suatu matriks didefinisikan sebagai selisih antara perkalian elemen-elemen pada diagonal utama dengan perkalian elemen-elemen pada diagonal sekunder. Determinan matriks hanya dapat ditentukan pada matriks persegi. Determinan dari matriks A dapat dituliskan det(A) atau |A|. Untuk menentukan determinan dari sebuah matriks, terdapat dua aturan berdasarkan ordonya, yaitu ordo 2x2 dan ordo 3x3. Determinan Matriks Ordo 2x2 Determinan matriks persegi dengan ordo 2x2 dapat dihitung dengan cara berikut: Determinan Matriks Ordo 3x3 Determinan matriks persegi dengan ordo 3x3 dapat dihitung dengan menggunakan dua cara, yaitu kaidah Sarrus dan ekspansi kofaktor. Namun, cara yang paling sering digunakan dalam menentukan determinan matriks ordo 3x3 adalah dengan kaidah Sarrus. Langkah-langkah mencari determinan matriks ordo 3x3 dengan kaidah Sarrus: 1. Meletakkan kolom pertama dan kolom kedua di sebelah kanan garis vertikal...
Komentar
Posting Komentar